Semi-supervised Extractive Question Summarization Using Question-Answer Pairs

Author:

Machida Kazuya,Ishigaki Tatsuya,Kobayashi Hayato,Takamura Hiroya,Okumura Manabu

Publisher

Springer International Publishing

Reference31 articles.

1. Amini, M.R., Gallinari, P.: The use of unlabeled data to improve supervised learning for text summarization. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2002), pp. 105–112. ACM (2002). https://doi.org/10.1145/564376.564397

2. Angelidis, S., Lapata, M.: Summarizing opinions: aspect extraction meets sentiment prediction and they are both weakly supervised. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018), pp. 3675–3686. Association for Computational Linguistics (2018). http://www.aclweb.org/anthology/D18-1403

3. Arumae, K., Liu, F.: Reinforced extractive summarization with question-focused rewards. In: Proceedings of ACL 2018, Student Research Workshop, pp. 105–111. Association for Computational Linguistics (2018). http://www.aclweb.org/anthology/P18-3015

4. Bhaskar, P.: Answering questions from multiple documents - the role of multi-document summarization. In: Proceedings of the Student Research Workshop Associated with RANLP 2013, pp. 14–21. INCOMA Ltd., Shoumen (2013). http://www.aclweb.org/anthology/R13-2003

5. Celikyilmaz, A., Thint, M., Huang, Z.: A graph-based semi-supervised learning for question-answering. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 719–727. Association for Computational Linguistics (2009). http://www.aclweb.org/anthology/P/P09/P09-1081

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3