Publisher
Springer Nature Switzerland
Reference33 articles.
1. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)
2. Clemente, C., Guerreiro, G.R., Bravo, J.M.: Modelling motor insurance claim frequency and severity using gradient boosting. Risks 11(9) (2023). https://doi.org/10.3390/risks11090163. https://www.mdpi.com/2227-9091/11/9/163
3. Deepchecks Glossary: Mean absolute error (2024). https://deepchecks.com/glossary/mean-absolute-error/
4. Fauzan, M., Murfi, H.: The accuracy of xgboost for insurance claim prediction. Int. J. Adv. Soft Comput. Appl. 10(2), 159–171 (2018)
5. Frees, E.W., Lee, G., Yang, L.: Multivariate frequency-severity regression models in insurance. Risks 4(1) (2016). https://doi.org/10.3390/risks4010004. https://www.mdpi.com/2227-9091/4/1/4