Author:
Li Meng,Wu Haijun,Dong Heng,Ren Guang,Zhang Peng,Huang Fenglei
Publisher
Springer International Publishing
Reference41 articles.
1. Zhang, S.X., Zhao, H.D., Han, Z.G.: Method of penetrate result prediction based on PSO-SVM. J. North Univer. China (Nat. Sci. Ed.) 36(2), 6 (2015)
2. Ryan, S., Thaler, S.: Artificial neural networks for characterising Whipple shield performance. Int. J. Impact Eng. 56, 61–70 (2013)
3. Ryan, S., Kandanaarachchi, S., Smith, M.K.: Support vector machines for characterising Whipple shield performance. Proc. Eng. 103, 522–529 (2015)
4. Ryan, S., Thaler, S., Kandanaarachchi, S.: Machine learning methods for predicting the outcome of hypervelocity impact events. Exp. Syst. Appl. 45, 23–39 (2016)
5. Xiong, P.Q.: Research on space debris damage pattern recognition based on neural network technology (Master’s Thesis). Harbin Institute of Technology, China (2012)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献