Development of an Annotation Schema for the Identification of Semantic Uncertainty in DIN Standards

Author:

Stegmeier Jörn,Hartig Jakob,Leštáková Michaela,Logan Kevin,Bartsch Sabine,Rapp Andrea,Pelz Peter F.

Abstract

AbstractThis paper presents the results of a pilot study carried out in cooperation between Linguistics and Mechanical Engineering, funded by the collaborative research centre (CRC) 805 “Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus”. Our goal is to help improve norm compliant product development and engineering design by focusing on ambiguous language use in norm texts (= “semantic uncertainty”). Depending on the country and product under development, industry standards may be legally binding. Thus, standards play a vital role in reducing uncertainty for manufacturers and engineers by providing requirements for product development and engineering design. However, uncertainty is introduced by the standards themselves in various forms, the most notable of which are the use of underspecified concepts, modal verbs like should, and references to texts which contain semantically uncertain parts. If conformity to standards is to be ensured, the person using the standards must interpret them and document the interpretation. In order to support users in these tasks, we developed an annotation schema which allows the identification and classification of semantically uncertain segments of standards, used the schema to create a taxonomy of semantic uncertainty in standards, developed a proof-of-concept information system. The results of this project can be used as a starting point for automated annotation. The information system alerts users to semantically uncertain segments of standards, provides background information, and allows them to document their decisions how to handle the semantically uncertain parts.

Publisher

Springer International Publishing

Reference30 articles.

1. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (1989)

2. Acquaviva, P., Lenci, A., Paradis, C., Raffaelli, I.: Models of lexical meaning. In: Pirrelli, V., Plag, I., Dressler, W.U. (eds.) Word Knowledge and Word Usage: A Cross-Disciplinary Guide to the Mental Lexicon. De Gruyter Mouton (2020)

3. Allan, K., Jaszczolt, K.: The Cambridge Handbook of Pragmatics. Cambridge University Press, Cambridge (2012)

4. Biber, D., Reppen, R.: The Cambridge Handbook of English Corpus Linguistics. Cambridge University Press, Cambridge (2015)

5. DIN 820-2 Standardization - Part 2: Presentation of documents. Beuth Verlag GmbH (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3