1. Baghoussi, Y., Soares, C., Mendes-Moreira, J.: Corrector LSTM: built-in training data correction for improved time series forecasting. In: Proceedings of the 8th SIGKDD International Workshop on Mining and Learning from Time Series–Deep Forecasting: Models, Interpretability, and Applications, Washington DC, USA, pp. 1–8. ACM (2022)
2. Bailer-Jones, C., MacKay, D.J.C., Withers, P.J.A.: A recurrent neural network for modelling dynamical systems. Network 9(4), 531–47 (1998). https://api.semanticscholar.org/CorpusID:653765
3. Baptista, A., Baghoussi, Y., Soares, C., Mendes-Moreira, J., Arantes, M.: Pastprop-RNN: improved predictions of the future by correcting the past (2021)
4. Bhowmik, P., Partha, A.S.: A data-centric approach to improve machine learning model’s performance in production. Int. J. Eng. Adv. Technol. (2021). https://api.semanticscholar.org/CorpusID:240328155
5. Bowman, S.R., Potts, C., Manning, C.D.: Recursive neural networks can learn logical semantics. In: Workshop on Continuous Vector Space Models and their Compositionality (2014). https://api.semanticscholar.org/CorpusID:15618372