Author:
Nayak Sachin,Sisodia Amitesh Singh,Peruru Subrahamanya Swamy
Publisher
Springer International Publishing
Reference17 articles.
1. Bitar, N., Muhammad, S., Refai, H.H.: Wireless technology identification using deep convolutional neural networks. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6 (2017). https://doi.org/10.1109/PIMRC.2017.8292183
2. Cabric, D., Tkachenko, A., Brodersen, R.W.: Experimental study of spectrum sensing based on energy detection and network cooperation. In: Proceedings of the First International Workshop on Technology and Policy for Accessing Spectrum, TAPAS ’06, p. 12-es. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1234388.1234400
3. CRAWDAD a community resource for archiving wireless data at dartmouth. https://crawdad.org/about.html. Accessed 13 June 2021
4. Dziedzic, A., Sathya, V., Rochman, M.I., Ghosh, M., Krishnan, S.: Machine learning enabled spectrum sharing in dense LTE-U/Wi-Fi coexistence scenarios. IEEE Open J. Veh. Technol. 1, 173–189 (2020)
5. A new standard for dynamic spectrum sharing. https://www.ericsson.com/en/blog/2019/6/dynamic-spectrum-sharing-standardization. Accessed 15 June 2021