1. Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 160–193. Chapman & Hall/CRC, Boca Raton (2007)
2. Brayton, R.H., Coppersmith, D., Hoffman, A.J.: Self-orthogonal Latin squares. In: Coll. Int. Th. Comb., Rome (1973), pp. 509–517. Atti del Convegni Lincei, vol. 17 (1976)
3. Dinitz, J.H., Stinson, D.R.: Room squares and related designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 137–204. Wiley, New York (1992)
4. Finizio, N.J., Zhu, L.: Self-orthogonal Latin squares. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 211–219. Chapman & Hall/CRC, Boca Raton, FL (2007)
5. Lamken, E.R.: 3-complementary frames and doubly near resolvable $$(v,3,2)-BIBD$$s. Discrete Math. 88, 59–78 (1991)