Low-Shot Multi-label Incremental Learning for Thoracic Diseases Diagnosis
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-04239-4_38
Reference17 articles.
1. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471, July 2017
2. Wang, X., Peng, Y., Lu, L., Lu, Z., Summers, R.M.: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays. CoRR, abs/1801.04334 (2018)
3. Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest X-rays with deep learning. CoRR, abs/1711.05225 (2017)
4. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3037–3046, October 2017
5. Cheng, J.Z., et al.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Discovering Unknown Labels for Multi-Label Image Classification;2022 IEEE International Conference on Data Mining Workshops (ICDMW);2022-11
2. Self-guided Multiple Instance Learning for Weakly Supervised Disease Classification and Localization in Chest Radiographs;Computer Vision – ACCV 2020;2021
3. Automated segmentation and diagnosis of pneumothorax on chest X-rays with fully convolutional multi-scale ScSE-DenseNet: a retrospective study;BMC Medical Informatics and Decision Making;2020-12
4. WGAN-Based Synthetic Minority Over-Sampling Technique: Improving Semantic Fine-Grained Classification for Lung Nodules in CT Images;IEEE Access;2019
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3