Toward Holistic Digital Material Description During Press-Hardening

Author:

Wesselmecking Sebastian,Ackermann Marc,Blankart Charline,Wang Jing,Brasche Frederike,Plum Tobias,Qin Siyuan,Pütz Felix,Münstermann Sebastian,Broeckmann Christoph,Hirt Gerhard,Krupp Ulrich

Abstract

AbstractPress hardening of manganese-boron steels is one of the most widely used production processes for high-strength automotive components. The low residual formability of these parts is a decisive disadvantage. The low formability originates from a strong, but brittle martensitic microstructure transformed during quenching in the press-hardening tool. In contrast, medium manganese steels (MMnS) contain high fractions of ductile retained austenite improving press-hardened parts toward promising candidates for crash-relevant car body components. Disadvantages include a more complex alloy design, a highly sensitive production process, and more demanding requirements on the tool due to higher strength during press-hardening.A detailed description of the entire production process along the process chain including the material and the press-hardening tool is important for tailoring the properties. Combined information is required to enable a precise control of the production process and its influences on the final properties of the part. Maximum economic use of the material is achieved by digitally describing MMnS as well as the tool along the entire process chain (casting, forging, hot rolling, cold rolling, galvanizing and press hardening including Q&P). To link the process steps and to describe the changes of the material, a new material database structure (idCarl) was developed. All production parameters are recorded and processed as a digital material twin. Ultimately, deviations occurring during production process can be deduced from in-line data analysis and counteracted. These can then be counteracted by adapted process control and the product can be brought back into the required parameter field of properties. Clear identification of the component and the used material allows conclusions about steps responsible for errors in the production process that become apparent during use.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3