Material Solutions to Increase the Information Density in Mold-Based Production Systems

Author:

Rudack Maximilian,Raffeis Iris,Adjei-Kyeremeh Frank,Chatterjee Sayan,Vroomen Uwe,Bührig-Polaczek Andreas,Bold Marie-Noemi,Schleifenbaum Johannes Henrich,Janowitz Julia,Vogels Carsten,Kalscheuer Christian,Heinemann Hendrik,Carlet Marco,Bobzin Kirsten,Vogel Sönke,Gillner Arnold,Melzer Felix,Dahlmann Rainer,Hopmann Christian

Abstract

AbstractProduction processes for the manufacturing of technical components are enabled by the availability and use of adequate engineering materials. Within the Internet of Production this work stream is dedicated to developing material and process-based solutions to increase the data availability during the manufacturing and operation of discontinuous mold-based production systems such as high-pressure die casting (HPDC) and injection molding (IM). This includes the development of data-driven alloy design strategies for additively manufactured mold components using tool steels as an initial use case as well as new surface-based smart sensor and actuator solutions. Material data and properties are tracked from the steel powder production via gas atomization until the final use in a mold to produce castings. Intermediate steps include the 3D printing of mold components via laser powder bed fusion and subsequent application of physical vapor deposition and thermal spraying-based smart multilayer coatings with sensor and actuator capabilities. The coating system is refined by selective laser patterning to facilitate the integration onto complex shape molding tool surfaces. Furthermore, molecular dynamics simulation-based methods are developed to derive material properties required for the modeling of polymer-based materials. By using this integrated methodology with the application of integrated computational materials engineering (ICME) methods from the metal powder for the mold printing up until the casting or molding process, the foundation for a holistic life cycle assessment within the integrated structural health engineering (ISHE) framework is laid for the produced tooling systems as well as the molded parts.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3