Author:
Asok Aswin,Kiliroor Cinu C.
Publisher
Springer Nature Switzerland
Reference7 articles.
1. Lima, V.C.d., Melo, V.H.C., Schwartz, W.R.: Simple and efficient pose-based gait recognition method for challenging environments. Pattern Anal. Applic. 24, 497–507 (2021)
2. Choi, S., Kim, J., Kim, W., Kim, C.: Skeleton-based gait recognition via robust frame-level matching. IEEE Trans. Inf. Forensics Secur. 14(10), 2577–2592 (2019). https://doi.org/10.1109/TIFS.2019.2901823
3. Wang, X., Zhang, J., Yan, W.Q.: Gait recognition using multichannel convolution neural networks. Neural Comput. Applic. 32, 14275–14285 (2020). https://doi.org/10.1007/s00521-019-04524-y
4. Arshad, H., et al.: A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition (2020). https://doi.org/10.1111/exsy.12541
5. Zhang, J., Zhang, C., Jiang, J.: Gait feature extraction using DenseNet and spatial transformer network. In: Proceedings of the 18th International Conference on Control, Automation, Robotics, and Vision (ICARCV) (2022)