Galois Connections for Patterns: An Algebra of Labelled Graphs

Author:

Cohen David A.,Cooper Martin C.,Jeavons Peter G.,Živný Stanislav

Abstract

AbstractA pattern is a generic instance of a binary constraint satisfaction problem (CSP) in which the compatibility of certain pairs of variable-value assignments may be unspecified. The notion of forbidden pattern has led to the discovery of several novel tractable classes for the CSP. However, for this field to come of age it is time for a theoretical study of the algebra of patterns. We present a Galois connection between lattices composed of sets of forbidden patterns and sets of generic instances, and investigate its consequences. We then extend patterns to augmented patterns and exhibit a similar Galois connection. Augmented patterns are a more powerful language than flat (i.e. non-augmented) patterns, as we demonstrate by showing that, for any $$k \ge 1$$ k 1 , instances with tree-width bounded by k cannot be specified by forbidding a finite set of flat patterns but can be specified by a finite set of augmented patterns. A single finite set of augmented patterns can also describe the class of instances such that each instance has a weak near-unanimity polymorphism of arity k (thus covering all tractable language classes).We investigate the power of forbidding augmented patterns and discuss their potential for describing new tractable classes.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3