Active Semantic Relations in Layered Enterprise Architecture Development

Author:

Baxter MattORCID,Polovina SimonORCID,Laurier WimORCID,Rosing Mark vonORCID

Abstract

AbstractEnterprise Architecture (EA) metamodels align an organisation’s business, information and technology resources so that these assets best meet the organisation’s purpose. The Layered EA Development (LEAD) Ontology enhances EA practices by a metamodel with layered metaobjects as its building blocks interconnected by semantic relations. Each metaobject connects to another metaobject by two semantic relations in opposing directions, thus highlighting how each metaobject views other metaobjects from its perspective. While the resulting two directed graphs reveal all the multiple pathways in the metamodel, more desirable would be to have one directed graph that focusses on the dependencies in the pathways. Towards this aim, using CG-FCA (where CG refers to Conceptual Graph and FCA to Formal Concept Analysis) and a LEAD case study, we determine an algorithm that elicits the active as opposed to the passive semantic relations between the metaobjects resulting in one directed graph metamodel. We also identified the general applicability of our algorithm to any metamodel that consists of triples of objects with active and passive relations.

Publisher

Springer International Publishing

Reference15 articles.

1. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);S Andrews,2018

2. Butterfield, A., Ngondi, G.E., Kerr, A. (eds.): A Dictionary of Computer Science, 7th edn. Oxford Quick Reference. Oxford University Press, Oxford, England (2016)

3. Formica, A.: Ontology-based concept similarity in formal concept analysis. Inform. Sci. 176(18), 2624–2641 (2006)

4. Guarino, N., Welty, C.A.: An Overview of OntoClean, pp. 151–171. Springer, Berlin Heidelberg, Berlin, Heidelberg (2004)

5. Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424–436 (1979)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3