Objectives of Inference for Stochastic Models

Author:

Salinas Ruíz JosafhatORCID,Montesinos López Osval AntonioORCID,Hernández Ramírez GabrielaORCID,Crossa Hiriart JoseORCID

Abstract

AbstractThroughout this book, we have been using the pseudonym GLMMs to denote generalized linear mixed models. The common denominator among all these models is that they all contain a linear model (LM) part, which refers to the fixed effects component of the linear predictor . In a GLMM, the prefix “G” indicates that the distribution of observations may not be normal, the suffix of the first M means that the linear predictor includes mixed effects and thus contains random effects, which are expressed by the term “Zb.” The fixed linear component of the predictor is important because the fixed effects describe the treatment design, which, in turn, is determined by the objectives or the initial research questions that the study wishes to answer. Therefore, if the researcher proposes using a reasonable model to analyze an experiment, then he/she must be able to express each objective as a question about a model parameter or as a linear combination of model parameters.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3