Yang-Mills Fields
-
Published:2013
Issue:
Volume:
Page:163-242
-
ISSN:1660-8046
-
Container-title:Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields
-
language:
-
Short-container-title:
Reference45 articles.
1. W.K. Allard, An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled. Proc. Symp. Pure Math. 44, 1–28 (1986)
2. F. Almgren, Q-valued functions minimizing Dirichlet’s integrals and the regularity of area-minimizing rectifiable currents up to codimension two. Bull. Am. Math. Soc. 8(2), 327–328 (1983)
3. N. Aronszajn, A unique continuation theorem for solutions of elliptic differential equations or inequalities. J. Math. Pures Appl. 36, 235–249 (1957)
4. M.F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308(1505), 523–615 (1982)
5. M.F. Atiyah, R.S. Ward, Instantons and algebraic geometry. Commun. Math. Phys. 55(2), 117–124 (1977)