Publisher
Springer International Publishing
Reference21 articles.
1. Adamaszek, A., Mnich, M., Paluch, K.: New approximation algorithms for $$(1,2)$$-TSP. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, pp. 9:1–9:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.9
2. Arora, S.: Polynomial time approximation schemes for Euclidean Traveling Salesman and other geometric problems. J. ACM 45(5), 753–782 (1998). https://doi.org/10.1145/290179.290180
3. Bansal, N., Bravyi, S., Terhal, B.M.: Classical approximation schemes for the ground-state energy of quantum and classical Ising spin Hamiltonians on planar graphs. Quant. Inf. Comput. 9(7), 701–720 (2009)
4. Berman, P., Karpinski, M.: $$8/7$$-approximation algorithm for $$(1,2)$$-TSP. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), pp. 641–648 (2006)
5. Borradaile, G., Klein, P.N., Mathieu, C.: A polynomial-time approximation scheme for Euclidean Steiner forest. ACM Trans. Algorithms 11(3), 19:1–19:20 (2015). https://doi.org/10.1145/2629654