Author:
Polat Erdeniz Seda,Adiyaman Ilhan,Ince Tevfik,Gür Ata,Felfernig Alexander
Publisher
Springer Nature Switzerland
Reference19 articles.
1. Yi, X., Paulet, R., Bertino, E., Varadharajan, V.: Practical approximate k nearest neighbor queries with location and query privacy. IEEE Trans. Knowl. Data Eng. 28(6), 1546–1559 (2016)
2. Chen, J., Fang, H., Saad, Y.: Fast approximate KNN graph construction for high dimensional data via recursive Lanczos bisection. J. Mach. Learn. Res. 10(9) (2009)
3. Anagnostou, P., Barbas, P., Vrahatis, A.G., Tasoulis, S.K.: Approximate kNN classification for biomedical data. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3602–3607. IEEE (2020)
4. Pan, J., Manocha, D.: Fast GPU-based locality sensitive hashing for k-nearest neighbor computation. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 211–220 (2011)
5. Bagui, S., Mondal, A.K., Bagui, S.: Improving the performance of kNN in the mapreduce framework using locality sensitive hashing. Int. J. Distrib. Syst. Technol. (IJDST) 10(4), 1–16 (2019)