Dexterous Regeneration Cell

Author:

Denkena Berend,Schumacher Tim,Hein Markus

Abstract

AbstractComplex capital goods such as components from aircraft engines or gas and steam turbines usually have free-form geometry features, individual material deposits, and poor machining accessibility. The recontouring of these components requires increased machine and process flexibility. In sub-project B2, “Dexterous Regeneration Cell”, a dexterous milling repair cell was researched, representing a central component of the real regeneration path in the Collaborative Research Centre (CRC) 871. “Dexterousness” is understood as the ability to carry out a self-optimizing, best possible repair machining. The combination of advanced methods for process design, novel machine tool technologies and adaptive machining functionalities allows the reliable 5-axis recontouring of individual damage cases despite repair-specific variances, influences from upstream processes, and flexibility of the workpiece or tool. In this paper, a force model is created using artificial intelligence to determine variances. Further process knowledge is obtained to minimize shape deviations. Furthermore, the displacement in the recontouring process of turbine blades is carried out with the help of a magnetically guided spindle.

Publisher

Springer International Publishing

Reference32 articles.

1. Altintas, Y. (2011). Manufacturing Automation. Cambridge University Press, Cambridge

2. Boujnah, H. (2019). Kraftsensitiver Spindelschlitten zur online Detektion und Kompensation der Werkzeugabdrängung in der Fräsbearbeitung. Ph.D. Thesis, Leibniz Universität Hannover, Hannover

3. Brecher, C., Wetzel, A., Berners, T., and Epple, A. (2019). Increasing Productivity of Cutting Processes by real-time Compensation of Tool Deflection due to Process Forces. Journal of Machine Engineering. 19, 16–27

4. Charalampous, P. (2020). Prediction of Cutting Forces in Milling Using Machine Learning Algorithms and Finite Element Analysis. Journal of Materials Engineering and Performance, 30(3), 1082–1088

5. Cho, S., Asfour, S., Onar, A., and Kaundinya, N. (2005). Tool breakage detection using support vector machine learning in a milling process. International Journal of Machine Tools and Manufacture, 45, 241–249

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3