Author:
Srinivas C. G. Prahalad,Balachander S.,Singh Samant Yogesh Chandra,Hariharan B. Varshin,Devi M. Nirmala
Publisher
Springer International Publishing
Reference10 articles.
1. Richa, S., et al.: A new hardware trojan detection technique using class weighted XGBoost classifier. In: 2020 24th International Symposium on VLSI Design and Test (VDAT). IEEE (2020)
2. Chen, D., et al.: A machine-learning-based hardware-Trojan detection approach for chips in the Internet of Things. Int. J. Distrib. Sensor Netw. 15(12), 1550147719888098 (2019)
3. Tianqi, C., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining (2016)
4. Priyatharishini, M., Nirmala Devi, M.: A compressive sensing algorithm for hardware trojan detection. Int. J. Electr. Comput. Eng. 9(5), 4035 (2019)
5. Aishwarya, G., et al.: Virtual instrumentation-based malicious circuit detection using weighted average voting. In: Microelectronics, Electromagnetics and Telecommunications, pp. 423–431. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7329-8_43
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reliability Enhancement of Hardware Trojan Detection using Histogram Augmentation Technique;2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID);2023-01
2. Feature‐based augmentation and classification for tabular data;CAAI Transactions on Intelligence Technology;2022-07-24
3. An Integrated GAN-Based Approach to Imbalanced Disk Failure Data;Intelligent Computing Theories and Application;2022