Publisher
Springer Nature Switzerland
Reference31 articles.
1. Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18). Curran Associates Inc, USA, pp 9525–9536. http://dl.acm.org/citation.cfm?id=3327546.3327621
2. Alhindi T, Petridis S, Muresan S (2018) Where is your evidence: improving fact-checking by justification modeling. In: Proceedings of the First Workshop on Fact Extraction and VERification (FEVER). Association for Computational Linguistics, Brussels, pp 85–90. https://doi.org/10.18653/v1/W18-5513. https://aclanthology.org/W18-5513
3. Arras L, Osman A, Müller KR, Samek W (2019) Evaluating recurrent neural network explanations. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Association for Computational Linguistics, Florence, pp 113–126. https://doi.org/10.18653/v1/W19-4813. https://aclanthology.org/W19-4813
4. Atanasova P, Simonsen JG, Lioma C, Augenstein I (2020) Generating fact checking explanations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, pp 7352–7364. https://doi.org/10.18653/v1/2020.acl-main.656. https://aclanthology.org/2020.acl-main.656
5. Augenstein I, Lioma C, Wang D, Chaves Lima L, Hansen C, Hansen C, Simonsen JG (2019) MultiFC: a real-world multi-domain dataset for evidence-based fact checking of claims. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, pp 4685–4697. https://doi.org/10.18653/v1/D19-1475. https://aclanthology.org/D19-1475