Publisher
Springer Nature Switzerland
Reference39 articles.
1. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4981–4990 (2018)
2. Akula, A.R., et al.: CX-ToM: counterfactual explanations with theory-of-mind for enhancing human trust in image recognition models. IScience 25(1), 103581 (2022)
3. Atad, M., et al.: CheXplaining in style: counterfactual explanations for chest X-rays using StyleGAN. arXiv preprint arXiv:2207.07553 (2022)
4. Bischof, R., Scheidegger, F., Kraus, M.A., Malossi, A.C.I.: Counterfactual image generation for adversarially robust and interpretable classifiers (2023). http://arxiv.org/abs/2310.00761
5. Burton, R.J., Albur, M., Eberl, M., Cuff, S.M.: Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med. Inform. Decis. Mak. 19, 1–11 (2019)