Publisher
Springer Nature Switzerland
Reference61 articles.
1. Weber, L., Lapuschkin, S., Binder, A., Samek, W.: Beyond explaining: opportunities and challenges of XAI-based model improvement. Inf. Fus. 92, 154–176 (2023)
2. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)
3. Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B Stat. Methodol. 82(4), 1059–1086 (2020)
4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. 20(177), 1–81 (2019)