Publisher
Springer Nature Switzerland
Reference28 articles.
1. Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence (XAI): a survey. arXiv preprint (2020). https://doi.org/10.48550/arXiv.2006.11371
2. Vouros, G.A.: Explainable deep reinforcement learning: state of the art and challenges. ACM Comput. Surv. 55(5), 1–39 (2022). https://doi.org/10.1145/3527448
3. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc., Red Hook (2017)
4. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games (AM-28), vol. II, pp. 307–318. Princeton University Press, Princeton (1953).https://doi.org/10.1515/9781400881970-018
5. Heuillet, A., Couthouis, F., Díaz-Rodríguez, N.: Collective explainable AI: explaining cooperative strategies and agent contribution in multiagent reinforcement learning with Shapley values. IEEE Comput. Intell. Mag. 17(1), 59–71 (2022). https://doi.org/10.1109/MCI.2021.3129959