Publisher
Springer International Publishing
Reference27 articles.
1. Berger, U. (2004). A computational interpretation of open induction. In 19th IEEE symposium on logic in computer science (LICS 2004) (pp. 326–334).
https://doi.org/10.1109/LICS.2004.1319627
.
2. Berghofer, S. (2004). A constructive proof of Higman’s lemma in Isabelle. In Berardi, S., Coppo, M., & Damiani, F. (Eds.), Types for proofs and programs: international workshop, TYPES 2003, Torino, Italy, April 30–May 4, 2003, Revised selected papers (pp. 66–82). Berlin: Springer.
https://doi.org/10.1007/978-3-540-24849-1_5
.
3. Coquand, T., & Fridlender, D. (1993). A proof of Higman’s lemma by structural induction. Unpublished manuscript.
4. Felgenhauer, B. (2015). Decreasing Diagrams II. Archive of Formal Proofs.
https://isa-afp.org/entries/Decreasing-Diagrams-II.shtml
. Formal proof development.
5. Felgenhauer, B., & van Oostrom, V. (2013) Proof orders for decreasing diagrams. In van Raamsdonk, F. (Ed.), 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 21, pp. 174–189). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
https://doi.org/10.4230/LIPIcs.RTA.2013.174
.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dependent choice as a termination principle;Archive for Mathematical Logic;2020-01-16