Author:
Sheng Mingyang,Ma Yongqiang,Chen Kai,Zheng Nanning
Publisher
Springer Nature Switzerland
Reference20 articles.
1. Akamatsu, Y., Harakawa, R., Ogawa, T., Haseyama, M.: Estimating viewed image categories from fMRI activity via multi-view Bayesian generative model. In: 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), pp. 127–128. IEEE (2019)
2. Akamatsu, Y., Harakawa, R., Ogawa, T., Haseyama, M.: Brain decoding of viewed image categories via semi-supervised multi-view Bayesian generative model. IEEE Trans. Sig. Process. 68, 5769–5781 (2020)
3. Akamatsu, Y., Harakawa, R., Ogawa, T., Haseyama, M.: Multi-view Bayesian generative model for multi-subject fMRI data on brain decoding of viewed image categories. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1215–1219. IEEE (2020)
4. Dieng, A.B., Kim, Y., Rush, A.M., Blei, D.M.: Avoiding latent variable collapse with generative skip models. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2397–2405. PMLR (2019)
5. Du, C., Du, C., Huang, L., He, H.: Reconstructing perceived images from human brain activities with Bayesian deep multiview learning. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2310–2323 (2018)