Author:
Faghihi Usef,Bouchard Sioui Maldonado,Biskri Ismail
Publisher
Springer International Publishing
Reference58 articles.
1. Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
2. Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.
3. Baziotis, C., Pelekis, N., & Doulkeridis, C. (2017). Data stories at SemEval-2017 task 4: Deep LSTM with attention for message-level and topic-based sentiment analysis. In Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017) (pp. 747–754).
4. Ding, X., Raziei, Z., Larson, E. C., Olinick, E. V., Krueger, P., & Hahsler, M. (2020). Swapped face detection using deep learning and subjective assessment. EURASIP Journal on Information Security, 2020, 1–12.
5. Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K. I., & Jegelka, S. (2019). What can neural networks reason about? arXiv preprint arXiv:1905.13211.