Author:
Lamsellak Oussama,Benlghazi Ahmad,Chetouani Abdelaziz,Benali Abdelhamid
Publisher
Springer Nature Switzerland
Reference19 articles.
1. Suk, H.-I., Sin, B.-K., Lee, S.-W.: Hand gesture recognition based on dynamic Bayesian network .framework. Patt. Recogn. 43, 3059–3072, 9 September 2010. https://doi.org/10.1016/j.patcog.2010.03.016
2. Wang, H., et al.: Hand gesture recognition framework using a lie group based spatio-temporal recurrent network with multiple hand-.worn motion sensors. Inf. Sci. 606, 722–741 (2022). ISSN 0020-0255. https://doi.org/10.1016/j.ins.2022.05.085
3. Chu, Y.-C., Jhang, Y.-J., Tai, T.-M., Hwang, W.-J.: Recognition of hand gesture sequences by accelerometers and gyroscopes. Appl. Sci. 10, 6507 (2020). https://doi.org/10.3390/app10186507
4. Miriam Lee-Cosio, B., Delgado-Mata, C., Ibanez, J.: ANN for gesture recognition using accelerometer data. Proc. Technol. 3, 109–120 (2012). ISSN 2212-0173. https://doi.org/10.1016/j.protcy.2012.03.012
5. Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use Erik Scheme, MSc, PEng; Kevin Englehart, PhD, PEng* Institute of Biomedical Engineering, University of New Brunswick, Canada