Publisher
Springer Nature Switzerland
Reference51 articles.
1. Arora, R., Upadhyay, J.: On differentially private graph sparsification and applications. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
2. Benczúr, A.A., Karger, D.R.: Approximating $$s$$-$$t$$ minimum cuts in $$O(n^2)$$ time. In: STOC 1996, pp. 47–55 (1996)
3. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109, 55–68 (2007)
4. Bonato, T., Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and separation procedures for the cut polytope. Math. Program. 146, 351–378 (2014)
5. Boros, E., Crama, Y., Hammer, P.L.: Upper-bounds for quadratic 0–1 maximization. Oper. Res. Lett. 9(2), 73–79 (1990)