1. Abraham, J., Higdon, D., Nelson, J., Ibarra, J.: Cryptocurrency price prediction using tweet volumes and sentiment analysis. SMU Data Sci. Rev. 1(3) (2018). https://scholar.smu.edu/datasciencereview/vol1/iss3/1. Accessed 13 Sept 2021
2. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, pp. 49–62 (2009)
3. Colianni, S., Rosales, S., Signorotti, M.: Algorithmic trading of cryptocurrency based on twitter sentiment analysis (2015)
4. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794
5. Contreras, J., Espinola, R., Nogales, F., Conejo, A.: ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 18(3), 1014–1020 (2003)