Leveraging Data-Driven Infrastructure Management to Facilitate AIOps for Big Data Applications and Operations

Author:

McCreadie Richard,Soldatos John,Fuerst Jonathan,Argerich Mauricio Fadel,Kousiouris George,Totow Jean-Didier,Nieto Antonio Castillo,Navidad Bernat Quesada,Kyriazis Dimosthenis,Macdonald Craig,Ounis Iadh

Abstract

AbstractAs institutions increasingly shift to distributed and containerized application deployments on remote heterogeneous cloud/cluster infrastructures, the cost and difficulty of efficiently managing and maintaining data-intensive applications have risen. A new emerging solution to this issue is Data-Driven Infrastructure Management (DDIM), where the decisions regarding the management of resources are taken based on data aspects and operations (both on the infrastructure and on the application levels). This chapter will introduce readers to the core concepts underpinning DDIM, based on experience gained from development of the Kubernetes-based BigDataStack DDIM platform (https://bigdatastack.eu/). This chapter involves multiple important BDV topics, including development, deployment, and operations for cluster/cloud-based big data applications, as well as data-driven analytics and artificial intelligence for smart automated infrastructure self-management. Readers will gain important insights into how next-generation DDIM platforms function, as well as how they can be used in practical deployments to improve quality of service for Big Data Applications.This chapter relates to the technical priority Data Processing Architectures of the European Big Data Value Strategic Research & Innovation Agenda [33], as well as the Data Processing Architectures horizontal and Engineering and DevOps for building Big Data Value vertical concerns. The chapter relates to the Reasoning and Decision Making cross-sectorial technology enablers of the AI, Data and Robotics Strategic Research, Innovation & Deployment Agenda [34].

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3