Model-Based Engineering and Semantic Interoperability for Trusted Digital Twins Big Data Connection Across the Product Lifecycle

Author:

Lázaro Oscar,Alonso Jesús,Holom Roxana-Maria,Rafetseder Katharina,Kritzinger Stefanie,Ubis Fernando,Fritz Gerald,Wiesinger Alois,Sehrschön Harald,Nguyen Jimmy,Luniewski Tomasz,Zietak Wojciech,Clavel Jerome,Perez Roberto,Hildebrand Marlene,Kiritsis Dimitris,Garious Hugues-Arthur,de la Maza Silvia,Ventura-Traveset Antonio,Hierro Juanjo,Boege Gernot,Ahle Ulrich

Abstract

AbstractWith the rising complexity of modern products and a trend from single products to Systems of Systems (SoS) where the produced system consists of multiple subsystems and the integration of multiple domains is a mandatory step, new approaches for development are demanded. This chapter explores how Model-Based Systems Engineering (MBSE) can benefit from big data technologies to implement smarter engineering processes. The chapter presents the Boost 4.0 Testbed that demonstrates how digital twin continuity and digital thread can be realized from service engineering, production, product performance, to behavior monitoring. The Boost 4.0 testbed demonstrates the technical feasibility of an interconnected operation of digital twin design, ZDM subtractive manufacturing, IoT product monitoring, and spare part 3D printing services. It shows how the IDSA reference model for data sovereignty, blockchain technologies, and FIWARE open-source technology can be jointly used for breaking silos, providing a seamless and controlled exchange of data across digital twins based on open international standards (ProStep, QIF), allowing companies to dramatically improve cost, quality, timeliness, and business results.

Publisher

Springer International Publishing

Reference20 articles.

1. INCOSE. https://www.incose.org/

2. INCOSE Technical Operations. (2007). Systems Engineering Vision 2020, version 2.03. Seattle, WA: International Council on Systems Engineering, Seattle, WA, INCOSE-TP-2004-004-02.

3. Boost 4.0. https://boost40.eu/

4. Zillner, S., Curry, E., Metzger, A., Auer, S., & Seidl, R. (2017). european big data value strategic research & innovation agenda. Big Data Value Association.

5. Zillner, S., Bisset, D., Milano, M., Curry, E., García Robles, A., Hahn, T., Irgens, M., Lafrenz, R., Liepert, B., O’Sullivan, B., & Smeulders, A. (Eds.) (2020) Strategic research, innovation and deployment agenda - AI, data and robotics partnership. Third release. September 2020, Brussels. BDVA, euRobotics, ELLIS, EurAI and CLAIRE”.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3