An Elastic Software Architecture for Extreme-Scale Big Data Analytics

Author:

Serrano Maria A.,Marín César A.,Queralt Anna,Cordeiro Cristovao,Gonzalez Marco,Pinho Luis Miguel,Quiñones Eduardo

Abstract

AbstractThis chapter describes a software architecture for processing big-data analytics considering the complete compute continuum, from the edge to the cloud. The new generation of smart systems requires processing a vast amount of diverse information from distributed data sources. The software architecture presented in this chapter addresses two main challenges. On the one hand, a new elasticity concept enables smart systems to satisfy the performance requirements of extreme-scale analytics workloads. By extending the elasticity concept (known at cloud side) across the compute continuum in a fog computing environment, combined with the usage of advanced heterogeneous hardware architectures at the edge side, the capabilities of the extreme-scale analytics can significantly increase, integrating both responsive data-in-motion and latent data-at-rest analytics into a single solution. On the other hand, the software architecture also focuses on the fulfilment of the non-functional properties inherited from smart systems, such as real-time, energy-efficiency, communication quality and security, that are of paramount importance for many application domains such as smart cities, smart mobility and smart manufacturing.

Publisher

Springer International Publishing

Reference14 articles.

1. A software architecture for extreme-scale big-data analytics in fog computing ecosystems (ELASTIC) (2020). https://elastic-project.eu/ [Online; accessed October 2020].

2. Apache Foundation (2017). Apache kafka. https://kafka.apache.org/ [Online; accessed October 2020].

3. Apache Foundation (2020). Apache druid. https://druid.apache.org/ [Online; accessed October 2020].

4. Barcelona Supercomputing Center (BSC). COMP Superscalar (COMPSs). http://compss.bsc.es/ [Online; accessed October 2020].

5. EdgeXFoundry (2020). https://www.edgexfoundry.org/ [Online; accessed November 2020].

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Managing Non-functional Requirements in an ELASTIC Edge-Cloud Continuum;ACM SIGAda Ada Letters;2023-04-05

2. An IoT Cloud and Big Data Architecture for the Maintenance of Home Appliances;IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society;2022-10-17

3. Global Resource Management in the ELASTIC Architecture;2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS);2022-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3