Privacy-Preserving Technologies for Trusted Data Spaces

Author:

Bonura Susanna,Carbonare Davide Dalle,Díaz-Morales Roberto,Fernández-Díaz Marcos,Morabito Lucrezia,Muñoz-González Luis,Napione Chiara,Navia-Vázquez Ángel,Purcell Mark

Abstract

AbstractThe quality of a machine learning model depends on the volume of data used during the training process. To prevent low accuracy models, one needs to generate more training data or add external data sources of the same kind. If the first option is not feasible, the second one requires the adoption of a federated learning approach, where different devices can collaboratively learn a shared prediction model. However, access to data can be hindered by privacy restrictions. Training machine learning algorithms using data collected from different data providers while mitigating privacy concerns is a challenging problem. In this chapter, we first introduce the general approach of federated machine learning and the H2020 MUSKETEER project, which aims to create a federated, privacy-preserving machine learning Industrial Data Platform. Then, we describe the Privacy Operations Modes designed in MUSKETEER as an answer for more privacy before looking at the platform and its operation using these different Privacy Operations Modes. We eventually present an efficiency assessment of the federated approach using the MUSKETEER platform. This chapter concludes with the description of a real use case of MUSKETEER in the manufacturing domain.

Publisher

Springer International Publishing

Reference28 articles.

1. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, Berlin.

2. Chen, V., Pastro, V., & Raykova, M. (2019). Secure computation for machine learning with SPDZ. arXiv preprint arXiv:1901.00329.

3. Coleman, C., Damodaran, S., & Deuel, E. (2017). Predictive maintenance and the smart factory. Tech. rep., Deloitte.

4. Cramer, R., Damgård, I. B., & Nielsen, J. B. (2015). Secure multiparty computation. Cambridge University, Cambridge.

5. Díaz-Morales, R., & Navia-Vázquez, Á. (2017). LIBIRWLS: A parallel IRWLS library for full and budgeted SVMs. Knowledge-Based Systems, 136, 183–186.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3