Detecting Surprising Situations in Event Data

Author:

Kohlschmidt Christian,Qafari Mahnaz Sadat,van der Aalst Wil M. P.

Abstract

AbstractProcess mining is a set of techniques that are used by organizations to understand and improve their operational processes. The first essential step in designing any process reengineering procedure is to find process improvement opportunities. In existing work, it is usually assumed that the set of problematic process instances in which an undesirable outcome occurs is known prior or is easily detectable. So the process enhancement procedure involves finding the root causes and the treatments for the problem in those process instances. For example, the set of problematic instances is considered as those with outlier values or with values smaller/bigger than a given threshold in one of the process features. However, on various occasions, using this approach, many process enhancement opportunities, not captured by these problematic process instances, are missed. To overcome this issue, we formulate finding the process enhancement areas as a context-sensitive anomaly/outlier detection problem. We define a process enhancement area as a set of situations (process instances or prefixes of process instances) where the process performance is surprising. We aim to characterize those situations where process performance is significantly different from what was expected considering its performance in similar situations. To evaluate the validity and relevance of the proposed approach, we have implemented and evaluated it on a real-life event log.

Publisher

Springer Nature Switzerland

Reference16 articles.

1. Bezerra, F., Wainer, J.: Fraud detection in process aware systems. Int. J. Bus. Process Integr. Manage. 5(2), 121–129 (2011)

2. Bezerra, F.D.L., Wainer, J.: A dynamic threshold algorithm for anomaly detection in logs of process aware systems (2012)

3. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

4. Lecture Notes in Computer Science;K Böhmer,2016

5. Carmona, J.J., de Leoni, M., Depaire, B., Jouck, T.: Process Discovery Contest 2017, vol. 5 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3