Event Log Generation in MIMIC-IV Research Paper

Author:

Cremerius Jonas,Pufahl Luise,Klessascheck Finn,Weske Mathias

Abstract

AbstractPublic event logs are valuable for process mining research to evaluate process mining artifacts and identify new and promising research directions. Initiatives like the BPI Challenges have provided a series of real-world event logs, including healthcare processes, and have significantly stimulated process mining research. However, the healthcare related logs provide only excerpts of patient visits in hospitals. The Medical Information Mart for Intensive Care (MIMIC)-IV database is a public available relational database that includes data on patient treatment in a tertiary academic medical center in Boston, USA. It provides complex care processes in a hospital from end-to-end. To facilitate the use of MIMIC-IV in process mining and to increase the reproducibility of research with MIMIC, this paper provides a framework consisting of a method, an event hierarchy, and a log extraction tool for extracting useful event logs from the MIMIC-IV database. We demonstrate the framework on a heart failure treatment process, show how logs on different abstraction levels can be generated, and provide configuration files to generate event logs of previous process mining works with MIMIC.

Publisher

Springer Nature Switzerland

Reference23 articles.

1. IEEE standard for extensible event stream (XES) for achieving interoperability in event logs and event streams. IEEE STD 1849-2016, pp. 1–50 (2016)

2. Lecture Notes in Business Information Processing;A Alharbi,2017

3. Andrews, R., van Dun, C.G., Wynn, M.T., Kratsch, W., Röglinger, M., ter Hofstede, A.H.: Quality-informed semi-automated event log generation for process mining. Decis. Support Syst. 132, 113265 (2020)

4. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: The onprom toolchain for extracting business process logs using ontology-based data access. In: Proceedings of the BPM Demo Track and BPM Dissertation Award, co-located with BPM 2017, vol. 1920. CEUR-WS.org (2017)

5. Cremerius, J., Weske, M.: Supporting domain data selection in data-enhanced process models. In: Wirtschaftsinformatik 2022 Proc. 3 (2022)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3