Representations with a Unique Monomial Structure

Author:

Cornelissen Gunther,Peyerimhoff Norbert

Abstract

AbstractIn this chapter, we recall the notion of monomial structures (and their isomorphism) on a representation, show a natural monomial structure on induced representations, and introduce solitary characters (characters whose induced representation has a unique monomial structure up to isomorphism); these characters may be used to detect conjugacy of subgroups. We also recall a specific type of wreath product construction and state and prove Bart de Smit’s theorem on the existence of solitary characters for these (and a follow-up result of Pintonello for characters of degree two)—these were previously formulated and used in the context of number theory, but we present them abstractly. We give an application to covering equivalence in a very specific setup of manifolds, and also count the number of required characters, based on a formula for the commutator of a wreath product.

Publisher

Springer International Publishing

Reference3 articles.

1. Gunther Cornelissen, Bart de Smit, Xin Li, Matilde Marcolli, and Harry Smit, Characterization of global fields by Dirichlet L-series, Res. Number Theory 5 (2019), no. 1, 5:7.

2. John D. P. Meldrum, Wreath products of groups and semigroups, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 74, Longman, Harlow, 1995.

3. Matteo Pintonello, Characterizing number fields with quadratic L-functions, ALGANT Master Thesis in Mathematics, Università degli studi di Padova & Universiteit Leiden, 25 June 2018, available at https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/master/algant/2017-2018/pintonello-master-thesis.pdf, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3