1. Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.: A transformer-based approach for source code summarization. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) ACL 2020, pp. 4998–5007. Association for Computational Linguistics (2020)
2. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme summarization of source code. In: Balcan, M., Weinberger, K.Q. (eds.) ICML 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 2091–2100. JMLR.org (2016). http://proceedings.mlr.press/v48/allamanis16.html
3. Avati, A., Jung, K., Harman, S., Downing, L., Ng, A.Y., Shah, N.H.: Improving palliative care with deep learning. BMC Med. Inform. Decis. Mak. 18(S-4), 55–64 (2018)
4. Baumel, T., Nassour-Kassis, J., Elhadad, M., Elhadad, N.: Multi-label classification of patient notes a case study on ICD code assignment. CoRR abs/1709.09587 (2017)
5. Cao, P., Chen, Y., Liu, K., Zhao, J., Liu, S., Chong, W.: HyperCore: hyperbolic and co-graph representation for automatic ICD coding, pp. 3105–3114. ACL, Online, July 2020. https://doi.org/10.18653/v1/2020.acl-main.282, https://www.aclweb.org/anthology/2020.acl-main.282