1. Balakrishnan, R., Li, T., Zhou, T., Himayat, N., Smith, V., Bilmes, J.: Diverse client selection for federated learning: submodularity and convergence analysis. In: ICML 2021 International Workshop on Federated Learning for User Privacy and Data Confidentiality (2021)
2. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)
3. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.: Scribe: a large-scale and decentralized application-level multicast infrastructure. IEEE J. Sel. Areas Commun. 20(8), 1489–1499 (2002)
4. Cho, Y.J., Wang, J., Joshi, G.: Client selection in federated learning: convergence analysis and power-of-choice selection strategies. arXiv preprint arXiv:2010.01243 (2020)
5. Cho, Y.J., Wang, J., Joshi, G.: Towards understanding biased client selection in federated learning. In: International Conference on Artificial Intelligence and Statistics, pp. 10351–10375. PMLR (2022)