Author:
Stavropoulos Panagiotis,Manitaras Dimitris,Bikas Harry,Souflas Thanassis
Abstract
AbstractIndustrial robots have been getting a more important role in manufacturing processes during the last decades, due to the flexibility they can provide in terms of reachability, size of working envelope and workfloor footprint. An especially interesting application are material removal processes and specifically machining. Use of robots in machining has opened new pathways for the development of flexible, portable robotic cells for several use cases. However, the peculiarity of such cells compared to traditional machine tools calls for novel approaches in their design and dynamic analysis. To this end, this work proposes an approach that integrates the digital twin of the machining process to set the boundary conditions for the design and dynamic analysis of the robotic cell. Physics-based modelling of milling is coupled with a Multi-Body Simulation of the robotic arm to define the inputs for the design of the cell. The design and dynamic analysis of the robotic cell is performed in a commercial FEA package, taking into account the requirements of the machining process.
Publisher
Springer International Publishing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献