1. Chen, Y., et al.: Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022). https://doi.org/10.1016/j.compbiomed.2022.105382
2. Dhariwal, P., Nichol, A.: Diffusion Models Beat GANs on Image Synthesis. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (NeurIPS). vol. 34, pp. 8780–8794. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
3. Duong, M.T., et al.: Artificial intelligence for precision education in radiology. Br. J. Radiol. 92(1103), 20190389 (2019). https://doi.org/10.1259/BJR.20190389
4. Fetty, L., et al.: Latent space manipulation for high-resolution medical image synthesis via the StyleGAN. Z. Med. Phys. 30(4), 305–314 (2020). https://doi.org/10.1016/j.zemedi.2020.05.001
5. Goodfellow, I., et al.: Generative Adversarial Nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems (NIPS). vol. 27 (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf