Author:
Spitalas Alexandros,Tsichlas Kostas
Publisher
Springer International Publishing
Reference41 articles.
1. Andriamampianina, L., Ravat, F., Song, J., Vallès-Parlangeau, N.: A generic modelling to capture the temporal evolution in graphs. In: 16e journées EDA : Business Intelligence & Big Data (EDA 2020), vol. RNTI-B-16, pp. 19–32. Lyon, France (2020). https://hal.science/hal-03109670
2. Besta, M., Fischer, M., Kalavri, V., Kapralov, M., Hoefler, T.: Practice of streaming processing of dynamic graphs: concepts, models, and systems (2021)
3. Bok, K., Kim, G., Lim, J., Yoo, J.: Historical graph management in dynamic environments. Electronics 9(6), 895 (2020). https://doi.org/10.3390/electronics9060895
4. Byun, J.: Enabling time-centric computation for efficient temporal graph traversals from multiple sources. IEEE Transactions on Knowledge and Data Engineering, p. 1 (2020). https://doi.org/10.1109/TKDE.2020.3005672
5. Byun, J., Woo, S., Kim, D.: Chronograph: enabling temporal graph traversals for efficient information diffusion analysis over time. IEEE Trans. Knowl. Data Eng. 32(3), 424–437 (2020). https://doi.org/10.1109/TKDE.2019.2891565