1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Theory Pract. Logic Program. (TPLP) 9(1), 57–144 (2009)
2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 2787–2795 (2013)
3. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware sampling and weighted model counting for sat. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI 2014, pp. 1722–1730. AAAI Press (2014).
http://dl.acm.org/citation.cfm?id=2892753.2892792
4. Cohen, W.W., Yang, F., Mazaitis, K.: TensorLog: deep learning meets probabilistic DBs. CoRR abs/1707.05390 (2017).
http://arxiv.org/abs/1707.05390
5. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);M Denecker,2002