1. Ahmad, M., Eckert, C, Teredesai, A., McKelvey, G.: Interpretable machine learning in healthcare. IEEE Intell. Inform. Bull. 19(1), 1–7 (2018, August)
2. Ahmad, M.A., Özönder, Ş.: Physics inspired models in artificial intelligence. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3535–3536 (2020, August)
3. Ancona, M., Ceolini, E., Oztireli, A., Gross, M.: A unified view of gradient-based attribution methods for deep neural networks, CoRR (2017). https://arxiv.org/abs/1711.06104
4. Bau, D, Zhu, J.Y., Strobelt, H., Zhou, Tenenbaum, J.B., Freeman, W.T., Torralba, A.T.: GAN dissection: visualizing and understanding generative adversarial networks, (2018/11/26). arXiv preprint arXiv:1811.10597
5. Bongard, J.: Biologically Inspired Computing. IEEE Comput. 42(4), 95–98 (2009)