The Top-Down Solver Verified: Building Confidence in Static Analyzers

Author:

Stade YannickORCID,Tilscher SarahORCID,Seidl HelmutORCID

Abstract

AbstractThe top-down solver (TD) is a local fixpoint algorithm for arbitrary equation systems. It considers the right-hand sides as black boxes and detects dependencies between unknowns on the fly—features that significantly increase both its usability and practical efficiency. At the same time, the recursive evaluation strategy of the TD, combined with the non-local destabilization mechanism, obfuscates the correctness of the computed solution. To strengthen the confidence in tools relying on the TD as their fixpoint engine, we provide a first machine-checked proof of the partial correctness of the TD. Our proof builds on the observation that the TD can be obtained from a considerably simpler recursive fixpoint algorithm, the plain TD, by applying an optimization that neither affects the termination behavior nor the computed result. Accordingly, we break down the proof into a partial correctness proof of the plain TD, which is only then extended to include the optimization. The backbone of our proof is a mutual induction following the solver’s computation trace. We establish sufficient invariants about the solver state to conclude the correctness of its optimization, i.e., the plain TD terminates if and only if the TD terminates, and they return the identical result. The proof is written using Isabelle/HOL and is available in the archive of formal proofs.

Publisher

Springer Nature Switzerland

Reference31 articles.

1. Akhin, M., Belyaev, M.: Variable initialization analysis (2020). https://kotlinlang.org/spec/control--and-data-flow-analysis.html#variable-initialization-analysis

2. Apinis, K., Seidl, H., Vojdani, V.: Side-effecting constraint systems: a Swiss army knife for program analysis. In: Jhala, R., Igarashi, A. (eds.) Programming Languages and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, 11–13 December 2012. Proceedings. LNCS, vol. 7705, pp. 157–172. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-35182-2_12

3. Apinis, K., Seidl, H., Vojdani, V.: How to combine widening and narrowing for non-monotonic systems of equations. In: Boehm, H., Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013, Seattle, WA, USA, 16–19 June 2013, pp. 377–386. ACM (2013). https://doi.org/10.1145/2491956.2462190

4. Apinis, K., Seidl, H., Vojdani, V.: Enhancing top-down solving with widening and narrowing. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi - Essays Dedicated to Hanne Riis Nielson and Flemming Nielson on the Occasion of Their 60th Birthdays. LNCS, vol. 9560, pp. 272–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27810-0_14

5. Bertot, Y., Grégoire, B., Leroy, X.: A structured approach to proving compiler optimizations based on dataflow analysis. In: Filliâtre, J., Paulin-Mohring, C., Werner, B. (eds.) Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, 15–18 December 2004, Revised Selected Papers. LNCS, vol. 3839, pp. 66–81. Springer, Cham (2004). https://doi.org/10.1007/11617990_5

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3