Experimental Study of In-Body Devices Misalignment Impact on Light-Based In-Body Communications

Author:

Fuada SyifaulORCID,Särestöniemi MariellaORCID,Katz MarcosORCID,Soderi SimoneORCID,Hämäläinen MattiORCID

Abstract

AbstractOptical wireless communication (OWC) has emerged as a promising technology for implantable medical devices because it provides private and secure wireless links for patients, low-power consumption, and high-speed data transmission. The OWC system’s receiving end typically relies on a photodetector with a limited field-of-view, necessitating direct line-of-sight connections for effective transmission. The directional nature of light-tissue interaction on the in-body communication can be problematic as the quality of the optical signal is rapidly deteriorated due to the properties of biological tissues, including scattering, absorption, and reflection, leading to a substantial loss of optical beam power reaching the photodetector’s sensitive area. In this sense, any misalignment that occurs in the in-body device can directly impact the power level and further degrade the received signal quality. Numerous studies have been conducted on this topic in free-space environments; nevertheless, only a few results have been found for in-body cases. In this work, we experimentally demonstrate the impact of the in-body device misalignment on the OWC-based in-body communication system. Three cases were investigated: aligned systems, as well as lateral and angular misalignments. We considered an 810 nm Near-infrared (NIR) LED as a transmitter because the optical signal of the mentioned wavelength propagates better than other wavelengths through biological tissues. For the experiments, we used pure muscle and fat tissues with 15 mm thickness at different temperatures (23 ℃ and 37 ℃). We also tested with thicker meat samples (30 mm, 38 mm, and 40 mm, consisting of muscle + fat layers) at 37 ℃. This study adhered to ANSI.Z136.1–2007 safety standards. First, the results reveal that optical power still reaches the receiver in an aligned reference case at a meat thickness of 40 mm. Second, the in-body device misalignment significantly degrades the optical power density received, which is more pronounced under lateral than angular conditions. These misalignment effects must be carefully considered for further system enhancement when using OWC for the in-body communication system.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3