Unfooling SHAP and SAGE: Knockoff Imputation for Shapley Values

Author:

Blesch KristinORCID,Wright Marvin N.ORCID,Watson DavidORCID

Abstract

AbstractShapley values have achieved great popularity in explainable artificial intelligence. However, with standard sampling methods, resulting feature attributions are susceptible to adversarial attacks. This originates from target function evaluations at extrapolated data points, which are easily detectable and hence, enable models to behave accordingly. In this paper, we introduce a novel strategy for increased robustness against adversarial attacks of both local and global explanations: Knockoff imputed Shapley values. Our approach builds on the model-X knockoff methodology, which generates synthetic data that preserves statistical properties of the original samples. This enables researchers to flexibly choose an appropriate model to generate on-manifold data for the calculation of Shapley values upfront, instead of having to estimate a large number of conditional densities or make strong parametric assumptions. Through real and simulated data experiments, we demonstrate the effectiveness of knockoff imputation against adversarial attacks.

Publisher

Springer Nature Switzerland

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3