Author:
Abouloifa Houria,Bahaj Mohamed
Publisher
Springer International Publishing
Reference11 articles.
1. Huber, J., Stuckenschmidt, H.: Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int. J. Forecast. 36(4), 1420–1438 (2020)
2. Tanizaki, T., Hoshino, T., Shimmura, T., Takenaka, T.: Demand forecasting in restaurants using machine learning and statistical analysis. Procedia CIRP 79, 679–683 (2019)
3. Ahmad, T., Chen, H.: Utility companies strategy for short-term energy demand forecasting using machine learning based models. Sustain. Cities Soc. 39, 401–417 (2018)
4. Aamer, A., Eka Yani, L., Alan Priyatna, I.: Data analytics in the supply chain management: Review of machine learning applications in demand forecasting. Oper. Supply Chain. Manag. Int. J. 14(1), 1–13 (2020)
5. Spiliotis, E., Makridakis, S., Semenoglou, A.A., Assimakopoulos, V.: Comparison of statistical and machine learning methods for daily SKU demand forecasting. Oper. Res. 1–25 (2020)