1. Bagherinezhad, H., Horton, M., Rastegari, M., Farhadi, A.: Label refinery: improving imagenet classification through label progression. CoRR abs/1805.02641 (2018), http://arxiv.org/abs/1805.02641
2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Machine Learn. 79(1), 151–175 (2010). https://doi.org/10.1007/s10994-009-5152-4
3. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
4. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184
5. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFS. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.7062