Author:
Bouh Youssef,Baslam Mohamed,Ouhda Mohamed
Publisher
Springer Nature Switzerland
Reference6 articles.
1. Rajapakshe, T., Latif, S., Rana, R., Khalifa, S., Schuller, B.: Deep reinforcement learning with pre-training for time-efficient training of automatic speech recognition (2020)
2. Altayeb, M., Zennaro, M., Pietrosemoli, E.: TinyML gamma radiation classifier. Nucl. Eng. Technol. 55(2), 443–451 (2023). https://doi.org/10.1016/J.NET.2022.09.032
3. Ihoume, I., Tadili, R., Arbaoui, N., Benchrifa, M., Idrissi, A., Daoudi, M.: Developing a multi-label tinyML machine learning model for an active and optimized greenhouse microclimate control from multivariate sensed data. Artif. Intell. Agric. 6, 129–137 (2022). https://doi.org/10.1016/j.aiia.2022.08.003
4. Andreas, Aldawira, C.R., Putra, H.W., Hanafiah, N., Surjarwo, S., Wibisurya, A.: Door security system for home monitoring based on ESP32. Procedia Comput. Sci. 157, 673–682 (2019). https://doi.org/10.1016/J.PROCS.2019.08.218
5. Warden, P., Situnayake, D.: TinyML Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers (2019)