1. Arlitsch, K., Herbert, J.: Microfilm, paper, and OCR: issues in newspaper digitization. Utah Digit. Newspapers Program 33(2), 59–67 (2004)
2. Assael, Y., et al.: Restoring and attributing ancient texts using deep neural networks. Nature 603(7900), 280–283 (2022)
3. Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: A framework for self-supervised learning of speech representations. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12449–12460. Curran Associates, Inc. (2020)
4. Cowen-Breen, C., Brooks, C., Haubold, J., Graziosi, B.: Logion: machine learning for Greek philology. arXiv:2305.01099 [cs] (2023)
5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019)